Fourth order partial differential equations on general geometries
نویسندگان
چکیده
We extend a recently introduced method for numerically solving partial differential equations on implicit surfaces (Bertalmı́o, Cheng, Osher, and Sapiro 2001) to fourth order PDEs including the CahnHilliard equation and a lubrication model for curved surfaces. By representing a surface in N as the level set of a smooth function, φ we compute the PDE using only finite differences on a standard Cartesian mesh in N . The higher order equations introduce a number of challenges that are of small concern when applying this method to first and second order PDEs. Many of these problems, such as time-stepping restrictions and large stencil sizes, are shared by standard fourth order equations in Euclidean domains, but others are caused by the extreme degeneracy of the PDEs that result from this method and the general geometry. We approach these difficulties by applying convexity splitting methods, ADI schemes, and iterative solvers. We discuss in detail the differences between computing these fourth order equations and computing the first and second order PDEs considered in earlier work. We explicitly derive schemes for the linear fourth order diffusion, the Cahn-Hilliard equation for phase transition in a binary alloy, and surface tension driven flows on complex geometries. Numerical examples validating our methods are presented for these flows for data on general surfaces.
منابع مشابه
Simulation of Singular Fourth- Order Partial Differential Equations Using the Fourier Transform Combined With Variational Iteration Method
In this paper, we present a comparative study between the modified variational iteration method (MVIM) and a hybrid of Fourier transform and variational iteration method (FTVIM). The study outlines the efficiencyand convergence of the two methods. The analysis is illustrated by investigating four singular partial differential equations with variable coefficients. The solution of singular partia...
متن کاملImage Zooming using Non-linear Partial Differential Equation
The main issue in any image zooming techniques is to preserve the structure of the zoomed image. The zoomed image may suffer from the discontinuities in the soft regions and edges; it may contain artifacts, such as image blurring and blocky, and staircase effects. This paper presents a novel image zooming technique using Partial Differential Equations (PDEs). It combines a non-linear Fourth-ord...
متن کاملSolving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation
In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...
متن کاملOn the Exact Solution for Nonlinear Partial Differential Equations
In this study, we aim to construct a traveling wave solution for nonlinear partial differential equations. In this regards, a cosine-function method is used to find and generate the exact solutions for three different types of nonlinear partial differential equations such as general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKDV) and general equal width wave equ...
متن کاملThe Stability of Non-standard Finite Difference Scheme for Solution of Partial Differential Equations of Fractional Order
Fractional derivatives and integrals are new concepts of derivatives and integrals of arbitrary order. Partial differential equations whose derivatives can be of fractional order are called fractional partial differential equations (FPDEs). Recently, these equations have received special attention due to their high practical applications. In this paper, we survey a rather general case of FPDE t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 216 شماره
صفحات -
تاریخ انتشار 2006